Identification of IV Bag Extractables Using GCMS, LC-HRMS, and ICP-MS

<u>Dujuan Lu¹</u>, Kenneth Wong¹, Kate Comstock², Ekong Bassey², John Schmelzel², Jing Kong¹, Danny Hower¹, Kelly Bertrand¹ ¹SGS Life Science Services, Fairfield, NJ, USA ²Thermo Fisher Scientific, San Jose, CA, USA

INTRODUCTION

Solutions in IV (Intravenous) bags, such as IV drugs, blood-based products, and parenteral nutrition, are infused directly into the veins of the patients in significant amounts. The quality of IV bag could affect medicine integrity and patient safety. Therefore, extractables and leachables analysis of IV bags and other medicine containers is required by regulatory agencies for product marketing approval.

This poster presents a comprehensive workflow for IV bag extractable analysis using multiple instruments to detect volatile, semivolatile, nonvolatile, and trace elemental impurities.

PURPOSE

To demonstrate a comprehensive workflow for IV bag extractable analysis using Headspace GC-MS, GC-MS, HR-LCMS, and ICP-MS.

MATERIALS AND METHODS

Sample Preparation

Commercially available IV bags were purchased from Amazon. Following PQRI recommendations to the FDA [1] and USP chapter 1663 recommendation [2], the bags were extracted using pH 3 water, pH 9 water, IPA/water (1:1), Ethanol/water (1:1), and phosphate buffered saline (PBS), and placed in a shaker at 50 °C for 7 days. The extract solutions were analyzed using Headspace GC-MS/FID for volatile organic compounds, Liquid-Injection GC-MS/FID for semi-volatile organic compounds, and LC-MS/UV for non-volatile organic compounds.

HR-LCMS ANALYSIS

Liquid Chromatography

The extracts solutions were analyzed directly by HR-LCMS

LC separations were carried out on the Thermo Ultimate™ 3000 RS UHPLC system consisting of: DGP-3000RS pump, WPS-3000RS sampler, TCC-3000RS column compartment, and DAD-3000RS UV detector.

Column: Thermo Accucore C18, 2.1x100 mm 2.6 µm Column temp: 35 °C. Mobile phase: A. H₂O/0.05% acetic acid/5 mM ammonium acetate,

B. Acetonitrile/0.05% acetic acid/5 mM ammonium acetate.

Flow rate: 400ul/min with gradient as below. Mobil B (%)

Mass Spectrometry

Mass spectrometry analyses were carried out on the Thermo Scientific Q Exactive Plus mass spectrometer using electrospray ionization (ESI). High resolution full scan MS and data-dependent top 3 MS/MS data were collected in a data-dependent fashion at a resolving power of 70,000 and 17,500 (FWHM m/z 200) with polarity switching.

Ionization mode: positive ESI Scan Range (Full MS): 120-1200 amu Ion source: HESI-II Spray voltage (KV):+3.5 Heated capillary temp (°C): 300 S-lens RF level: 55.0 Heater temp (°C): 430

HR-LCMS RESULTS

High Resolution LCMS Screening with Polarity Switching

The High Resolution Accurate Mass (HRAM) full scan and MS/MS data acquisition with polarity switching was used for extractable analysis. The rapid polarity switching data acquisition ensured the detection of structurally diverse compounds, see Figure 1. It provided complete extractable profile and increased the analysis throughput, see Figure 2. The accurate mass and fine isotope pattern increased the confidence for elemental composition assignments. The information-rich HCD MS/MS spectra assisted the identification and structure elucidation of extractables, especially for unknowns and isobaric component identification, see Figure 3.

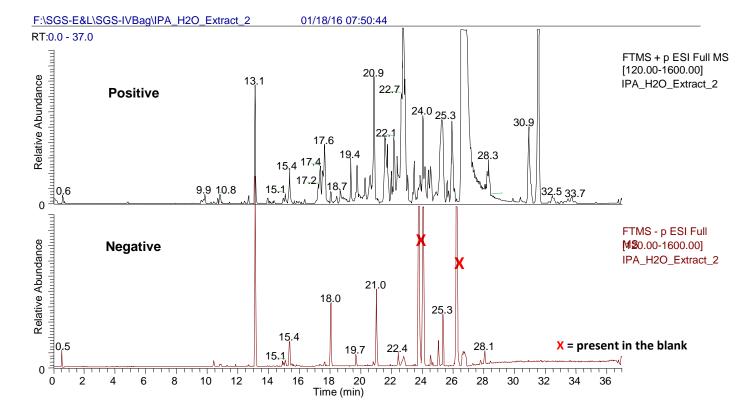


FIGURE 2. HRAM Data with Polarity Switching

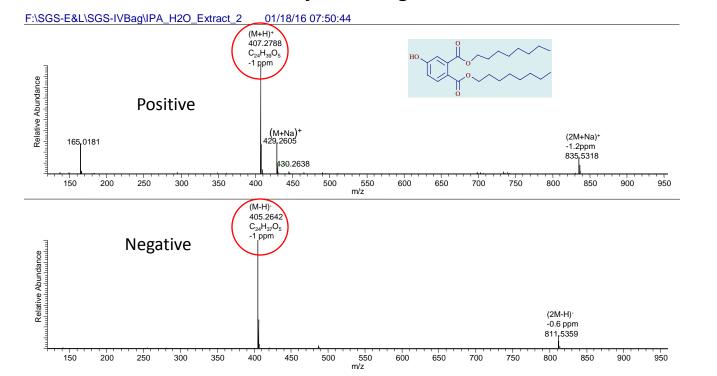
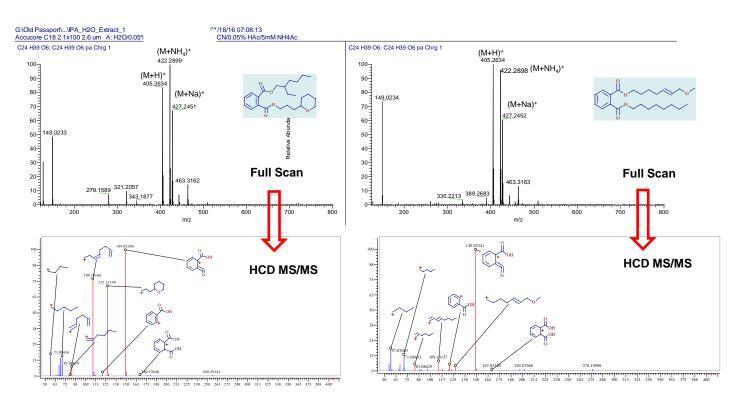
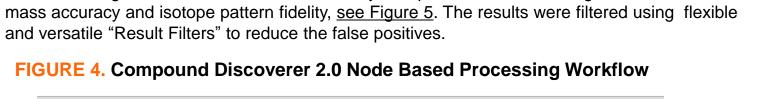




FIGURE 3. Full Scan and HCD MS/MS Data for Component and Structure ID

Data Analysis

Compound Discoverer software and mzCloud spectral library The HRAM data was processed with Compound Discoverer 2.0 (CD2.0), a small molecule ID software (Thermo Fisher Scientific). The processing workflow was built by following the "New Study and Analysis Wizard", see Figure 4. CD 2.0 detected compounds with "Predicted Formula", followed by automatic online library search against mzCloud and ChemSpider, as well as local E&L compound database. The compounds identified from the mzCloud library can be checked using the mirror plot of ms/ms spectra of identified compound with library standard.

CD 2.0 result view shows the identified components with "Predicted Formula" and corresponding

molecular weight. The database search results yield spectra fit and matching score based on

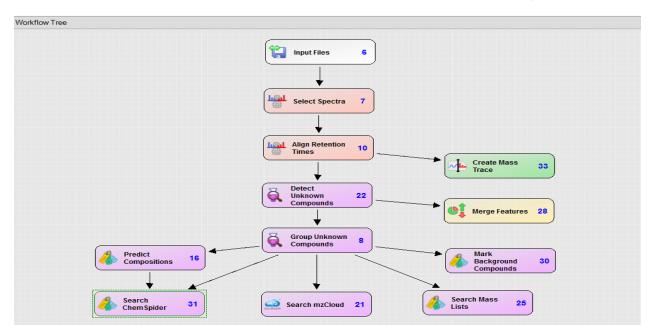


FIGURE 5. Compound Discoverer 2.0 Result View

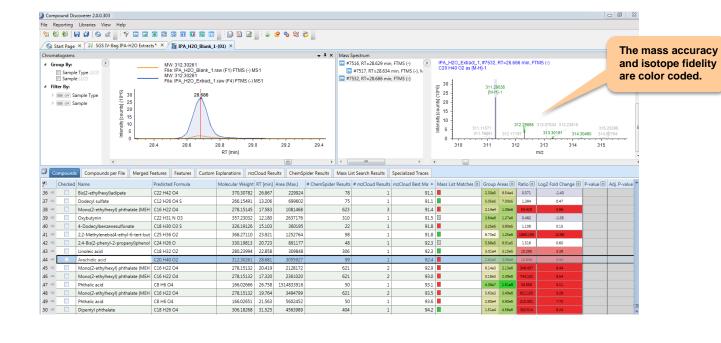
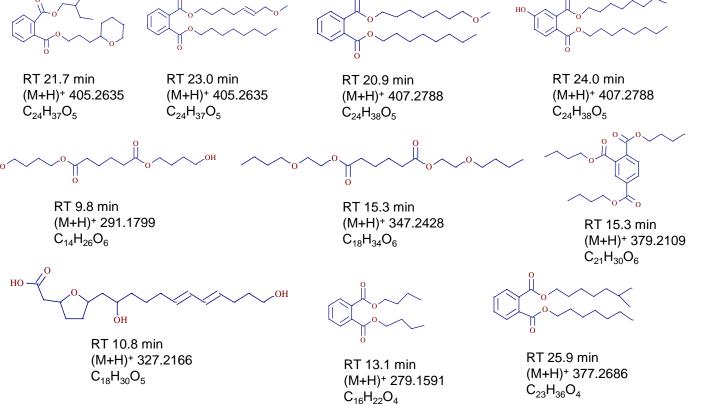



TABLE 1. Proposed Structures of Extractables in IPA/H2O (Partial List)

Unknown Compound Identification Using "Custom Explanation" and "FISh Scoring" (FISh stands for Fragment Ion Search)

The identified unknown compounds were added to the "Custom Explanations" table. Based on the predicted formula, molecular weight, and ms/ms fragmentation, putative structures were proposed in "Custom Explanation Editor", then the "FISh Scoring" feature was used to search the embedded "Fragments and Mechanisms" library. Any matching fragments were automatically annotated with fragment structures, and the "FISh Coverage" score indicated the percentage of fragment ion matching between experimental data and fragmentation libraries.

GC-MS ANALYSIS

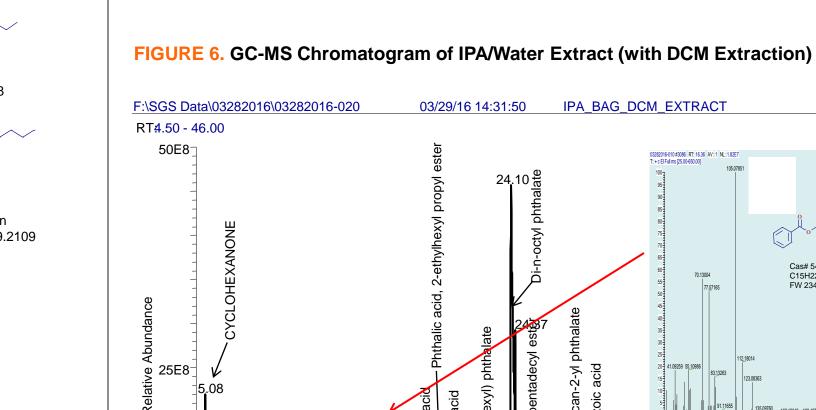
Headspace GC-MS Results:

Headspace GC-MS analysis was conducted on Agilent G1888 Headspace sampler, Agilent 6890N GC, and Agilent 5973 MS to identify volatile organic.

Cyclohexanone was found in all extracts, which was also shown by liquid injection GC-MS analysis. Unexpectedly, IPA was found in all aqueous extracts. Further investigation showed that the IPA found in aqueous extracts was volatile small molecule compounds migrate/penetrate through plastic bags from IPA/Water extraction solvent, which was present in the same oven during incubation.

The overlap of extractable profile by Headspace-GC-MS and Liquid Injection GC-MS has shown the completeness of the volatile and semi-volatile organic compound profile in the methods.

Liquid-injection GC-MS


Liquid-Injection GC-MS analysis was conducted to identify semivolatile organic compounds using Thermo Trace 1310 GC and ISQ single Quad MS. NIST library was used to assist identification. The IPA/Water extract has shown the highest concentration of extractable compounds, especially hydrophobic compounds, compared to other extracts (pH 3, pH 9 PBS, and Ethanol/Water). The major peak observed from all extracts is Bis (2-ethylhexyl) phthalate (DEHP), which is the primary plasticizer of this PVC bag. Most of the extractable compounds are phthalates, degradants from DEHP, and lubricants, see Figure 6.

GC-MS identified the volatile and semivolatile compounds. The result was complementary to the LCMS result.

Liquid-Injection GC-MS Conditions Gas Chromatograph: Thermo Trace 1310 GC Mass Spectrometer: Thermo Single Quad ISQ Column: TG-5HT (30 m \times 0.25 mm \times 0.10 µm) Temperature Program: not show Total Run Time: 45 min Carrier Gas: Helium Carrier Gas Flow: 1.5 mL/min

Injection Volume: 1.0 µL

Injector: splitless (for 1.0 min)

Cas# 5444-75-7 C15H22O2 FW 234.16198

Time (min)

ICP-MS RESULTS

The ICPMS samples were prepared by filling the IV bags with 250 ml of 1% nitric acid and 250 ml DI water, respectively. The filled bags were kept at RT for 24 hours. The analyses were conducted on Thermo Scientific *iCAP Q ICP-MS with He KED (Kinetic Energy Discrimination) interference reduction mode setting. The iCAP Q was set up using Helium gas in the collision cell in KED mode.

The USP<232> Class1 & 2 elements and additional elements (total 66) were determined in this analysis. The results demonstrated that the IV bags were clean, containing no toxic elements, see Table 2. The system control software Qtegra provides full 21CFR Part 11 toolset to operate under compliant environments. It is compatible with USP 233 & 232 requirements.

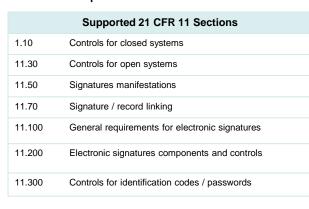


TABLE 2. ICP-MS Result (ppb)

Element	IV DI	IV Acid	Element	IV DI	IV Acid	Element	IV DI	IV Acid
66Zn	65.32	81.14	60Ni	ND	ND	157Gd	ND	ND
44Ca	20.49	23.90	73Ge	ND	ND	159Tb	ND	ND
24Mg	1.48	3.38	78Se	ND	ND	163Dy	ND	ND
23Na	1.06	0.74	85Rb	ND	ND	165Ho	ND	ND
48Ti	0.04	0.06	89Y	ND	ND	166Er	ND	ND
88Sr	0.02	0.03	90Zr	ND	ND	169Tm	ND	ND
137Ba	0.02	0.01	93Nb	ND	ND	172Yb	ND	ND
63Cu	0.01	0.03	95Mo	ND	ND	175Lu	ND	ND
55Mn	ND	0.01	101Ru	ND	ND	178Hf	ND	ND
75As	ND	ND	103Rh	ND	ND	181Ta	ND	ND
111Cd	ND	ND	105Pd	ND	ND	182W	ND	ND
202Hg	ND	ND	107Ag	ND	ND	185Re	ND	ND
208Pb	ND	ND	115In	ND	ND	189Os	ND	ND
7Li	ND	ND	118Sn	ND	ND	193Ir	ND	ND
9Be	ND	ND	121Sb	ND	ND	195Pt	ND	ND
11B	ND	ND	125Te	ND	ND	197Au	ND	ND
27Al	ND	ND	133Cs	ND	ND	205TI	ND	ND
39K	ND	ND	139La	ND	ND	209Bi	ND	ND
45Sc	ND	ND	140Ce	ND	ND	232Th	ND	ND
51V	ND	ND	141Pr	ND	ND	238U	ND	ND
52Cr	ND	ND	146Nd	ND	ND			
56Fe	ND	ND	147Sm	ND	ND			
59Co	ND	ND	153Eu	ND	ND			

CONCLUSIONS

This study demonstrated a comprehensive extractable analysis workflow utilizing multiple techniques: HR-LCMS, GCMS, ICPMS, and data processing software with database searching.

- The high resolution MS screening method using full MS and HCD MS2 with rapid polarity switching in a single run increased the confidence and throughput of routine extractable &
- Data processing software and spectral library facilitate compound structure ID and characterization.
- Results show that GCMS and LCMS analysis are complementary to each other and necessary to give a fuller picture of the extractable profile.
- *iCAP Q ICP-MS control software Q tegra provides full 21CFR Part 11 toolset to operate under compliant environments, and is compatible with USP 233 & 232 requirements.

REFERENCES

1. PQRI "L/E Recommendations to the FDA" http://www.pqri.org/publications/index.asp 2. USP Chapter 1663 "Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems" August 2015

